中文題目:剔除內皮細胞特異性雌激素受體 α 信號加重惡化血管重構反應 英文題目: Endothelial-specific ablation of ER alpha rapid signaling revealed exacerbated vascular remodeling response

作 者:劉邦彥^{1,2},廣井透雄³,上田和孝²,福馬仲章²,瀧本英樹²,李予昕⁴,野間玄督⁵,廖光然⁶,小室一成²

服務單位:¹三軍總醫院心臟內科,²東京大學醫學系研究科循環器內科學,³日本國立國際醫療研究中心病院循環器內科,⁴日本大學醫學部機能型態學系,⁵廣島大學原爆放射線醫科學研究所,⁶芝加哥大學心臟內科

Background: Estrogen exerts complex physiological effects via its rapid (non-genomic) and genomic actions. In particular, rapid signaling of estrogen receptor alpha (ER α) has been implicated in the vasculo-protective effects, in which both endothelial and smooth muscle cells might be involved. However, no prior studies have determined the role of ER α rapid signaling in the endothelium. This study aims to clarify the impact of ER α rapid signaling in the vasculo-protection, using a novel mouse model lacking endotheilal-specific ER α rapid signaling.

Method: GST-fusion p85 α plasmids were synthesized using PCR. ER α cDNA was subcloned and mutation was introduced using QuikChange II XL Site-Directed Mutagenesis Kits (Agilent Technologies). COS7 cells were purchased from American Type Culture Collection (ATCC, Manassas, VA).

Results: We identify a double point mutant ERα with defective ERα non-genomic signaling mediated by p85α subunit of phosphatidylinositol 3-kinase. In immunoblotting, p85α and p-GSK3β, non-genomic pathway downstream signals, were reduced in ERα mutants RR259/260AA with estradiol (E2) stimulation. ERE-luciferase assay demonstrated E2 induced genomic pathway activity was preserved. By crossing Tie2-Cre transgenic mice with floxed ERα mutants (RR259/260 AA), a novel mouse model in which rapid signaling of ERα was ablated in the endothelium was generated. In endothelial cells isolated from ERα^{KI/KI}Tie2^{cre/+} animals, E2 failed to induce phosphorylation of Erk, Elastica van Gieson staining 2 weeks after WI revealed that wall thickness, and area of medial layer, composed mainly of smooth muscle cells were significantly increased in ERα^{KI/KI}Tie2^{cre/+} mouse, as compared to wild types. Masson's Trichrome staining showed that fibrosis was significantly increased in ERα^{KI/KI}Tie2^{cre/+} mouse

Conclusions: Our results demonstrate that the rapid signaling of $ER\alpha$ in the endothelium critically regulates vascular smooth muscle cell growth after vascular injury, suggesting its essential role to vascular remodeling.